

Development Standards & Practices Used

No hardware, purely software

Agile

Modular code

Clean code

Well documented code

Summary of Requirements

Runs in CLI

Parses Helm charts

Creates policies based on rules provided in templates

checks configs of helm charts and alerts if they fail

Applicable Courses from Iowa State University Curriculum
SE 309 - Working as a team with the Agile work process

SE 363 - Used Docker after the provided virtual machines were not working.

SE 311 - Working with data structures and developing the most efficient

algorithms

As far as for the tools that we are using for this project, there are no classes that

are teaching Go or Docker skills. For the classes that we did use these tools in, it

was only because we were interested in learning and the learning was self guided.

SDDEC18-XX 1

New Skills/Knowledge acquired that was not taught in courses
Configuration with Kubernetes

Parsing Files with Security Checks

Experience with Go Programming Language

Communicating to an Advisor of our group’s progress

Communicating to an Advisor with team management

Manipulation of Helm Charts

Knowledge of Python in General

Helm configuration

Docker usage

SDDEC18-XX 2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 5

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 6

1.7 Expected End Product and Deliverables 7

2. Specifications and Analysis 7

2.1 Proposed Design 7

2.2 Design Analysis 7

2.3 Development Process 8

2.4 Design Plan 8

3. Statement of Work 8

3.1 Previous Work And Literature 8

3.2 Technology Considerations 9

3.3 Task Decomposition 9

3.4 Possible Risks And Risk Management 9

3.5 Project Proposed Milestones and Evaluation Criteria 9

3.6 Project Tracking Procedures 10

3.7 Expected Results and Validation 10

4. Project Timeline, Estimated Resources, and Challenges 10

4.1 Project Timeline 10

4.2 Feasibility Assessment 12

4.3 Personnel Effort Requirements 12

4.4 Other Resource Requirements 13

4.5 Financial Requirements 13

5. Testing and Implementation 13

5.1 Interface Specifications 13

5.2 Hardware and software 13

SDDEC18-XX 3

5.3 Functional Testing 14

5.4 Non-Functional Testing 14

5.5 Process 15

5.6 Results 15

6. Closing Material 16

6.1 Conclusion 16

6.2 References 16

6.3 Appendices 16

List of figures/tables/symbols/definitions (This should be similar to the
project plan)

Figure 1: Gantt Chart 12

Table 1: Effort requirements with explanation 12

Link 1: https://aws.amazon.com/inspector/ 8

Link 2: https://www.aquasec.com/solutions/kubernetes-container-security/ 9

Photo 1: valid input 14

Photo 2: invalid input 14

Photo 3: process mockup 15

SDDEC18-XX 4

https://aws.amazon.com/inspector/
https://www.aquasec.com/solutions/kubernetes-container-security/

1 Introduction

1.1 ACKNOWLEDGMENT
Julie Rursch - Group Advisor

Eric Anders - Workiva

Thank you for your contributions!

1.2 PROBLEM AND PROJECT STATEMENT
There does not exist a tool that checks the configuration of helm charts nor the configurations
produced by them. Linters and syntax checkers exist, however, they only check that the helm
charts are formatted correctly. They do not check that clusters comply with predefined rule sets.

By creating an extensible framework we hope to provide a well documented, highly extensible,
useful tool that prevents a lot of security issues that can exist when using kubernetes. Often the
setup of these services is done without enough thought put into the security of the company. Our
project will allow companies to be more confident about the security and the correct initialization
of their clustered computing setups.

There is nothing out there that exists on what we are trying to accomplish. Our drive is not only to
give the open-source community this tool but also be the first people to craft a tool like this. Since
this project will be open source it will also service its users better because of the potential for future
community development.

1.3 OPERATIONAL ENVIRONMENT
The end product will run in a Command Line Interface, and will not be exposed to unusually
hazardous conditions. This is solely software-based, so there will be no expectations physically for
the product. However, we do expect the end product to be able to run on Linux and MacOS.

1.4 REQUIREMENTS
Functional requirements

● System should parse and check Kubernetes configuration files
● System should parse and check helm charts
● Command-line interface should allow for easy interaction with the system
● System should alert the user of potential security vulnerabilities
● System should suggest how to fix potential security vulnerabilities

SDDEC18-XX 5

Economic requirements

Since the project is almost entirely software, there are very few economic requirements.
There is no hardware that needs to be purchased or licenses that need to be paid for since
the project will be entirely open-source.

Environmental requirements

Again, since the project is almost entirely software-bound, the physical environment has
no effect on it. There is no hardware that could be exposed to the elements or poor
weather. In terms of the computer architecture environment, the project should be able to
run on macOS and *NIX systems.

UI requirements

To keep the program lightweight and portable, the UI will not consist of a GUI, but rather
a command-line interface. This is plenty sufficient for usability and fulfilling the intended
use cases.

1.5 INTENDED USERS AND USES
The intended user is the person conducting a security review for a Kubernetes project.

The intended use is to streamline and reduce user error in the process of checking security
configurations against a defined ruleset.

1.6 ASSUMPTIONS AND LIMITATIONS
Assumptions

We assume that the user will have a basic knowledge of Kubernetes security configurations.

We assume that the user will have a basic knowledge of security with files in general

These assumptions are made because the intended user is for someone who wants to perform
security checks with Kubernetes. Someone who doesn't have this previous knowledge probably
wouldn't be using this then.

Limitations

The end product will be lightweight and run in a CLI.

We expect the end product to be able to run Linux and macOS.

We expect the end product to be able to effectively perform a security review.

It will not add functionality to kubernetes, but to the initialization and setup.

The product will need to be sought after in order to be found as it is not a commercial product.

SDDEC18-XX 6

1.7 EXPECTED END PRODUCT AND DELIVERABLES
The end product and deliverables for our senior design project are as follows.

● A lightweight and portable CLI program that can check, verify, and alert users about
potentially insecure and vulnerable Kubernetes configurations and helm charts.
Lightweight means that it must be a small program that can be downloaded quickly from
any internet connection. Portable means that it is not system-dependent and can run on a
multitude of Operating Systems.

● Extensive documentation on the installation and use of the program so that anyone will be
able to understand and use this. This documentation will include readme markdown
documentation for outside users intending to use the program. Additionally, this will
include a well-commented code for the open-source community intending to clone and
contribute to the repository.

● Open-source code for continual improvement by the open-source community. It is proven
that open-source code is more cost-effective, quicker to develop, much more
secure/transparent, and more extensible in the future by anyone. We are making our
program open-sourced for the aforementioned reasons

The delivery dates for these deliverables is T.B.D due to the nature of the senior design program.
We can estimate that the above will be ready sometime around May of 2020.

2. Specifications and Analysis

2.1 PROPOSED DESIGN
We have a proof-of-concept program capable of parsing configuration YAML files.

The application will parse and analyze Helm and Kubernetes security configuration files, and
compare the results against a defined set of rules.

The application will run in CLI.

The application will accept templates of rule sets to compare to.

The application will be rigorously tested to sufficiently ensure correctness.

2.2DESIGN ANALYSIS
Our group has been communicating with both our advisor and each other about team roles and
planning for our code development. We have mostly been communicating through online
messaging with our entire team. Although our team has also met in person as well. So far our
meetings, whether that be face-to-face or online, have been very successful. Each one of us is able
to understand what is expected and we are able to hold each other accountable for tasks that need
to get done.

SDDEC18-XX 7

Our strengths are communication and expectations. Everyone in our team is okay with sharing
their thoughts and ideas. Expectations are clearly understood and set as well. Our biggest weakness
is availability. All of our members are extremely busy so finding times to meet in person is a
challenge.

Observations and thoughts on our team style so far are mostly positive. We all are communicating
effectively and getting tasks done on time.

Finally, our team members have been learning the GO language. This is the language that we will
be developing our code in.

2.3DEVELOPMENT PROCESS
We are using an Agile development process because our requirements are well-defined but we are
meeting with our team of couple of weeks to make adjustments if needed.

We are developing one part at a time, testing it with our tests, showing our advisors what we have
how it works now, and testing it in the environment it will be used, and making any necessary
changes.

2.4DESIGN PLAN
We are developing our code one feature at a time. This ensures our code is modular. Each feature
can run on its own and is imported into the main package. The high degree of modularity makes
the code more extensible so that others can modify it for their purposes.

The GUIs are going to be written as local client/servers. This model reduces the overhead and
allows them to be run from the terminal, regardless of the desktop environment. This also reduces
the number of dependencies needed for the application.

As of now we do not know all of the dependencies and modules we will be using. We anticipate
that we will only need modules and dependencies we will have will be from the standard library.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE
One product that has some similarities to our product is Amazon's "Inspector". This program
automatically improves the security of applications on AWS. Then it will show the user where the
threats are and explain to the user how serious each threat is. The difference is that "Inspector" only
deals with applications on AWS and it doesn't relate to Helm at all.

Source: See Link 1

SDDEC18-XX 8

Aqua works with Kubernetes and performs security checks daily. After the check, Aqua will make a
report based on their findings. This is similar to our project because this analyzes security flaws
with Kubernetes. Although this differs from our project because our project is focusing more
heavily on Helm charts.

See Link 2

3.2 TECHNOLOGY CONSIDERATIONS
Our project is entirely software so technology considerations will only be in the computer area. As
for the language that we are going to use, we are going to code in GO.

Some of the strengths of using GO are that it's compiled based, has memory safety, and has a
garbage collection.

Weakness: Most of our team hasn't used GO before so we had to learn the language

3.3 TASK DECOMPOSITION
The main tasks that we will need to do for this are to break the helm chart/kubernetes down before
and after running in order to parse them to check for inaccuracies. Once this is done we will be
able to create a user interface for the project. This user interface is important because it is what is
going to allow us to add the extras after aside from the parsing, we will need to finish that before
we go on to making a template generator. Aside from that it is just the linter that will need to be
added and whatever else we want to add if we find that we want more.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT
Lack of experience in the area is a risk we are actively combating through studying GoLang and
Kubernetes.

Loss of one or more team members is a possible severe risk, we are mitigating this risk by ensuring
our documentation is routinely up-to-date such that a team change would not result in a
catastrophic loss of progress or information.

Risks such as the obsolescence of Kubernetes are insignificantly likely, though even in the event
such things come to pass we could transfer the skills we learn here to whatever may replace it.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA
Key milestones would consist of the following: Parsing of helmcharts/kubernetes files, parse
templates and store values after configuration, check values of parsed info to make sure it has
finished correctly, create alerts based off of the incorrect info, make a user interface for the
application, setup a template generator, add a linter to the system. Each of these milestones are

SDDEC18-XX 9

designed so that they are able to be tested task-wise. When we give reach these milestones we will
know because all of these are provable/tangible parts of our project. In fact, these are basically
where the same times that we need to do major testing on each portion. The tests for each of these
milestones will be dependent on what is being tested. Most of the important testing will be to make
sure our parsed information is correct and we will need to spend a lot of time on this because the
entire project is reliant on this being correct.

3.6 PROJECT TRACKING PROCEDURES
First off we spoke with our advisor and we set milestones on what we want to accomplish. We are
going to track ourselves with when we hit those milestones and whether it was before or after our
"due date". Also, we will be tracking our progress through completed issues on Github. Based on
how many issues get done per person, we will determine the difficulty of every task and determine
how much work they have done. So if a GitHub issue is harder than normal, then when that task is
completed then that person will have done more work compared to an average Github issue. We
are following the agile style of development so we will also make note of when someone gets their
smaller tasks done on time.

3.7 EXPECTED RESULTS AND VALIDATION
The desired outcome of the project is a lightweight application running on the command line,
parsing Kubernetes configurations and alerting the user on incorrect configurations. The
application should be able to be configured for various templates.

We will confirm that our solutions work at a high level through rigorous testing and use in
Kubernetes environments.

4. Project Timeline, Estimated Resources, and
Challenges

4.1 PROJECT TIMELINE
February 2020 - Phase 3 done

Dec 30 2019 Phase 1

● Project design planning
● Requirements gathering

SDDEC18-XX 10

● Regular team meetings to plan and schedule
● Familiarization with framework and languages
● Design document drafting
● Initial implementation of the parser

Jan 15 2020 phase 2

● Ability to parse templates AND store proper configuration values

Feb 10 phase 3

● Alert/Gracefully handle misconfigured values

Feb 20 phase 4

● Make a GUI for easy interaction with the program
● GUI is either standalone or integrated with a tool like Rancher

March 1 phase 5

● Provide template generation - making it easier to user and less error prone
● Possibly make a GUI for template generation
● Like phase 4, could integrate with a tool like Rancher

March 12 phase 6:

● Implement functionality to alert on CVEs found in the stack running the containers

March 22 phase 7:

● Add a linter for security policy templates
● Add additional features as we see fit
● Optimize for speed and size

Figure 1: Gantt Chart

SDDEC18-XX 11

4.2 FEASIBILITY ASSESSMENT
Realistically, the project will sufficiently fill our requirements, though it is unlikely to fulfill some of
our unofficial open-ended nonfunctional requirements. Examples of challenges we have foreseen
are that GoLang does not support the data structures we initially planned to use, requiring us to
reconfigure our plans, and that because only superficially similar applications exist we cannot take
significantly useful inspiration from those.

4.3 PERSONNEL EFFORT REQUIREMENTS

Table 1: Effort requirements with explanation

Task Text reference/explanation Estimate of effort

Parsing of helm
charts/kubernetes files

This will be the first milestone
that we will need to accomplish
and will allow a base to check
against

This is going to be the medium
difficulty because it is
important that this is robust
and holds up with many test
cases.

Parse templates and store
values after configuration

This will likely be mainly be
similar to the previous one but a
bit more difficult because they will
be checked off of configured
setups.

This will be similar to above
but with an added layer of
difficulty as we are needing to
check the already run
templates to verify that the
setups have run correctly and
store that info.

Check values of parsed
info to make sure it has
finished correctly

This will be the core of our
product and will be important to
get correct, as well as important to
test.

Assuming we are able to get
our information setup side by
side with the before an after,
this will just be a check to
make sure the values are the
same

Create alerts based off of
the incorrect info

This is going to the first part of the
user portion of the program

This is going to be triggered by
the above check, and should
not be

Make a user interface for
the application

This will make the application
easy to use

This will be difficult because
we will need to make sure it is
simple to use and difficult to
break. Also making this robust
for our use will be important so
that it eases the use for the
customer.

SDDEC18-XX 12

Setup a template
generator

This is an addition and not a core
feature but will be important

This will, as above help with
the robustness for user ease. It
will not be difficult, but will
require us to be very
knowledgeable on the
relationships between different
settings on the helm charts.

Add a linter to the
system

This is another feature that will
add robustness to our application

The linter is something that
already exists, but since we
would like our project to be
powerful it is important to
have it. Since it does exist, it
will not be too hard, and we
will be able to take inspiration
from other open source
examples.

4.4 OTHER RESOURCE REQUIREMENTS
No additional resources will be required to conduct the project.

4.5 FINANCIAL REQUIREMENTS
No additional financial resources will be required to conduct the project.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS
Our project will not be dealing with hardware and software interfacing with each other and our
project will be able to be run on both Unix and Windows systems since it will be written using Go.
Because of this, the effects of hardware interfacing will not be important.

SDDEC18-XX 13

5.2HARDWARE AND SOFTWARE

We do not require any hardware specifications due to our project being a lightweight software
program. We are currently testing in visual studio code with simple test cases and simple yaml files
in to validate our proof of concept.

5.3FUNCTIONAL TESTING
Our group has been doing unit testing. Currently we are parsing through yaml files to determine
the validity of our input.

An example of a valid input file:

Photo 1: valid input

Everything we are looking for a valid yaml file was provided. We then are currently printing out the
results.

An example of an invalid file:

Photo 2: invalid input

Right now our current validity checks are simple, but this proves we will be able to set our own
check against files to our specifications.

SDDEC18-XX 14

5.4NON-FUNCTIONAL TESTING
So far we have not done any testing for performance, security, usability, or compatibility. This is
currently because our project is mainly behind the scenes checks of configurations, which does not
require early implementation of these functions. We have dedicated our time to functional testing.

5.5PROCESS

We mocked a simple input/result test. We gave test files that we expected to pass and then we gave
test files that we expected to fail. Then if the desired result was not met, we would make changes to
our code.

Photo 3: process mockup

5.6RESULTS

Failures:

SDDEC18-XX 15

We tried to use a parsing technique by utilizing the built in ioutil file reader. This lead to some
complications because we had no way in checking the config files’ contents.

Successes:

We implemented our own parsing function that lets us control the logic of checking the file
contents of yaml files which lead to more success in testing

Learned:

Overall we learned that we do have a lot of work to do, but we were able to prove that it is possible
to check yaml file’s contents.

6. Closing Material

6.1 CONCLUSION
Thus far we have primarily been learning and familiarizing ourselves with the language and systems
we are using to accomplish our goals, and while doing so have worked to manufacture a definitive
design for our product. We have also put together a working proof-of-concept program to prove
that our designs are sound and can perform according to our goals.

Our goal is a lightweight program running in a command line interface that can parse Kubernetes
and Helm charts for valid values. Should incorrect values be found, the user will be alerted. The
code will be open-source, and have extensive documentation on the use of the program.

The best solution to achieve our goals is to continue with our proof-of-concept, refining and
iterating on it in an agile manner until we have developed a product that fulfills our specifications.
This is the optimal solution because only superficially similar products already exist, and they
cannot be used for our purposes. All in all, we are well on our way to arriving at our goal.

6.2 REFERENCES
Lafeldt, M. and Hamburg, G. (2019). Decoding YAML in Go. [online] The Sharp End. Available at:
https://sharpend.io/blog/decoding-yaml-in-go/ [Accessed 9 Dec. 2019].

Kubernetes.io. (2019). Production-Grade Container Orchestration. [online] Available at:
https://kubernetes.io/ [Accessed 9 Dec. 2019].

Helm.sh. (2019). Helm. [online] Available at: https://helm.sh/ [Accessed 9 Dec. 2019].

SDDEC18-XX 16

6.3 APPENDICES

We currently do not have any additional information that needs to be added.

SDDEC18-XX 17

